Transverse Thermoelectricity in Fibrous Composite Materials
نویسندگان
چکیده
Transverse thermoelectric elements have the potential to decouple the electric current and the heat flow, which could lead to new designs of thermoelectric devices. While many theoretical and experimental studies of transverse thermoelectricity have focused on layered structures, this work examines composite materials with aligned fibrous inclusions. A simplified mathematical model was derived based on the Kirchhoff Circuit Laws (KCL), which were used to calculate the equivalent transport properties of the composite structures. These equivalent properties, including Seebeck coefficient, electrical conductivity, and thermal conductivity, compared well with finite element analysis (FEA) results. Peltier cooling performance was also examined using FEA, which exhibited good agreement to KCL model predictions. In addition, a survey was conducted on selected combinations of thermoelectric materials and metals to rank their transverse thermoelectricity with respect to the dimensionless figure of merit.
منابع مشابه
A Novel Method to Decrease Micro-residual Stresses of Fibrous Composites by Adding Carbon Nanotube
In this research, a novel method to decrease micro-residual stresses of fibrous composites by adding carbon nanotubes (CNTs) is proposed in detail. The negative coefficient of thermal expansion and the high young’s modulus of CNTs can be utilized to counterbalance the process induced residual stresses in composites. To this end, first, the effects of adding CNTs to the matrix of fibrous composi...
متن کاملCapillary Effects on Surface Enhancement in a Non-Homogeneous Fibrous Porous Medium
The evaluation of a free fluid surface in a porous medium has several mathematical applications that are important in industries using molds, particularly in the fluid injection process. The vacuum-assisted resin transfer molding (VARTM) process is a promising technology in the primary composite industry. An accurate computational simulation of the VARTM process would be a cost-effective tool i...
متن کاملComparison of Two Computational Microstructure Models for Predicting Effective Transverse Elastic Properties of Unidirectional Fiber Reinforced Composites
Characterization of properties of composites has attracted a great deal of attention towards exploring their applications in engineering. The purpose of this work is to study the difference of two computational microstructure models which are widely used for determining effective transverse elastic properties of unidirectional fiber reinforced composites. The first model based on the classic me...
متن کاملTheoretical/Experimental Characteristics of Interosseous Membrane of Human Forearm
The interosseous membrane (IOM) is a fibrous structure located within the forearm that possesses distinct direction and shape patterns. The membrane maintains the interosseous space between the radius and ulna through forearm rotations and actively transfers forces from the radius to the ulna. The interosseous membrane’s load transferring ability reduces the forces placed on the radiocapitellar...
متن کاملSize effects on the nanomechanical properties of cellulose I nanocrystals
The ultimate properties of a fibrous composite system depend highly on the transverse mechanical properties of the fibers. Here, we report the size dependency of transverse elastic modulus in cellulose nanocrystals (CNCs). In addition, the mechanical properties of CNCs prepared from wood and cotton resources were investigated. Nanoindentation in an atomic force microscope (AFM) was used in comb...
متن کامل